\(\int \frac {x (a+b \text {csch}^{-1}(c x))}{(d+e x)^{3/2}} \, dx\) [65]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [F(-1)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 318 \[ \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{(d+e x)^{3/2}} \, dx=\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {4 b c \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{\left (-c^2\right )^{3/2} e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {8 b d \sqrt {\frac {\sqrt {-c^2} (d+e x)}{\sqrt {-c^2} d+e}} \sqrt {1+c^2 x^2} \operatorname {EllipticPi}\left (2,\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),\frac {2 e}{\sqrt {-c^2} d+e}\right )}{c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \]

[Out]

2*d*(a+b*arccsch(c*x))/e^2/(e*x+d)^(1/2)+2*(a+b*arccsch(c*x))*(e*x+d)^(1/2)/e^2-8*b*d*EllipticPi(1/2*(1-x*(-c^
2)^(1/2))^(1/2)*2^(1/2),2,2^(1/2)*(e/(d*(-c^2)^(1/2)+e))^(1/2))*(c^2*x^2+1)^(1/2)*((e*x+d)*(-c^2)^(1/2)/(d*(-c
^2)^(1/2)+e))^(1/2)/c/e^2/x/(1+1/c^2/x^2)^(1/2)/(e*x+d)^(1/2)+4*b*c*EllipticF(1/2*(1-x*(-c^2)^(1/2))^(1/2)*2^(
1/2),(-2*e*(-c^2)^(1/2)/(c^2*d-e*(-c^2)^(1/2)))^(1/2))*(c^2*x^2+1)^(1/2)*(c^2*(e*x+d)/(c^2*d-e*(-c^2)^(1/2)))^
(1/2)/(-c^2)^(3/2)/e/x/(1+1/c^2/x^2)^(1/2)/(e*x+d)^(1/2)

Rubi [A] (verified)

Time = 1.14 (sec) , antiderivative size = 318, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.579, Rules used = {45, 6445, 12, 6853, 6874, 733, 430, 946, 174, 552, 551} \[ \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{(d+e x)^{3/2}} \, dx=\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}-\frac {8 b d \sqrt {c^2 x^2+1} \sqrt {\frac {\sqrt {-c^2} (d+e x)}{\sqrt {-c^2} d+e}} \operatorname {EllipticPi}\left (2,\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),\frac {2 e}{\sqrt {-c^2} d+e}\right )}{c e^2 x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {d+e x}}+\frac {4 b c \sqrt {c^2 x^2+1} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{\left (-c^2\right )^{3/2} e x \sqrt {\frac {1}{c^2 x^2}+1} \sqrt {d+e x}} \]

[In]

Int[(x*(a + b*ArcCsch[c*x]))/(d + e*x)^(3/2),x]

[Out]

(2*d*(a + b*ArcCsch[c*x]))/(e^2*Sqrt[d + e*x]) + (2*Sqrt[d + e*x]*(a + b*ArcCsch[c*x]))/e^2 + (4*b*c*Sqrt[(c^2
*(d + e*x))/(c^2*d - Sqrt[-c^2]*e)]*Sqrt[1 + c^2*x^2]*EllipticF[ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]], (-2*Sq
rt[-c^2]*e)/(c^2*d - Sqrt[-c^2]*e)])/((-c^2)^(3/2)*e*Sqrt[1 + 1/(c^2*x^2)]*x*Sqrt[d + e*x]) - (8*b*d*Sqrt[(Sqr
t[-c^2]*(d + e*x))/(Sqrt[-c^2]*d + e)]*Sqrt[1 + c^2*x^2]*EllipticPi[2, ArcSin[Sqrt[1 - Sqrt[-c^2]*x]/Sqrt[2]],
 (2*e)/(Sqrt[-c^2]*d + e)])/(c*e^2*Sqrt[1 + 1/(c^2*x^2)]*x*Sqrt[d + e*x])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 174

Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Sym
bol] :> Dist[-2, Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d
*g - c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c
*f)/d, 0]

Rule 430

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])

Rule 551

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])

Rule 552

Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 +
(d/c)*x^2]/Sqrt[c + d*x^2], Int[1/((a + b*x^2)*Sqrt[1 + (d/c)*x^2]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c,
 d, e, f}, x] &&  !GtQ[c, 0]

Rule 733

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*a*Rt[-c/a, 2]*(d + e*x)^m*(Sqrt[1
+ c*(x^2/a)]/(c*Sqrt[a + c*x^2]*(c*((d + e*x)/(c*d - a*e*Rt[-c/a, 2])))^m)), Subst[Int[(1 + 2*a*e*Rt[-c/a, 2]*
(x^2/(c*d - a*e*Rt[-c/a, 2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-c/a, 2]*x)/2]], x] /; FreeQ[{a, c, d, e},
 x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rule 946

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-c/
a, 2]}, Dist[1/Sqrt[a], Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]), x], x]] /; FreeQ[{a, c, d
, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[c*d^2 + a*e^2, 0] && GtQ[a, 0]

Rule 6445

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Dist[a + b*ArcCsch[c*x],
v, x] + Dist[b/c, Int[SimplifyIntegrand[v/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x], x] /; InverseFunctionFreeQ[v, x
]] /; FreeQ[{a, b, c}, x]

Rule 6853

Int[(u_.)*((a_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[b^IntPart[p]*((a + b*x^n)^FracPart[p]/(x^(n*FracPa
rt[p])*(1 + a*(1/(x^n*b)))^FracPart[p])), Int[u*x^(n*p)*(1 + a*(1/(x^n*b)))^p, x], x] /; FreeQ[{a, b, p}, x] &
&  !IntegerQ[p] && ILtQ[n, 0] &&  !RationalFunctionQ[u, x] && IntegerQ[p + 1/2]

Rule 6874

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps \begin{align*} \text {integral}& = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {b \int \frac {2 (2 d+e x)}{e^2 \sqrt {1+\frac {1}{c^2 x^2}} x^2 \sqrt {d+e x}} \, dx}{c} \\ & = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {(2 b) \int \frac {2 d+e x}{\sqrt {1+\frac {1}{c^2 x^2}} x^2 \sqrt {d+e x}} \, dx}{c e^2} \\ & = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \int \frac {2 d+e x}{x \sqrt {d+e x} \sqrt {1+c^2 x^2}} \, dx}{c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x} \\ & = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \int \left (\frac {e}{\sqrt {d+e x} \sqrt {1+c^2 x^2}}+\frac {2 d}{x \sqrt {d+e x} \sqrt {1+c^2 x^2}}\right ) \, dx}{c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x} \\ & = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {\left (4 b d \sqrt {1+c^2 x^2}\right ) \int \frac {1}{x \sqrt {d+e x} \sqrt {1+c^2 x^2}} \, dx}{c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x}+\frac {\left (2 b \sqrt {1+c^2 x^2}\right ) \int \frac {1}{\sqrt {d+e x} \sqrt {1+c^2 x^2}} \, dx}{c e \sqrt {1+\frac {1}{c^2 x^2}} x} \\ & = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {\left (4 b d \sqrt {1+c^2 x^2}\right ) \int \frac {1}{x \sqrt {1-\sqrt {-c^2} x} \sqrt {1+\sqrt {-c^2} x} \sqrt {d+e x}} \, dx}{c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x}+\frac {\left (4 b \sqrt {-c^2} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {2 \sqrt {-c^2} e x^2}{c^2 d-\sqrt {-c^2} e}}} \, dx,x,\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right )}{c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \\ & = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {4 b \sqrt {-c^2} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {\left (8 b d \sqrt {1+c^2 x^2}\right ) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {d+\frac {e}{\sqrt {-c^2}}-\frac {e x^2}{\sqrt {-c^2}}}} \, dx,x,\sqrt {1-\sqrt {-c^2} x}\right )}{c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x} \\ & = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {4 b \sqrt {-c^2} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {\left (8 b d \sqrt {1+c^2 x^2} \sqrt {1+\frac {e \left (-1+\sqrt {-c^2} x\right )}{\sqrt {-c^2} d+e}}\right ) \text {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {2-x^2} \sqrt {1-\frac {e x^2}{\sqrt {-c^2} \left (d+\frac {e}{\sqrt {-c^2}}\right )}}} \, dx,x,\sqrt {1-\sqrt {-c^2} x}\right )}{c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \\ & = \frac {2 d \left (a+b \text {csch}^{-1}(c x)\right )}{e^2 \sqrt {d+e x}}+\frac {2 \sqrt {d+e x} \left (a+b \text {csch}^{-1}(c x)\right )}{e^2}+\frac {4 b \sqrt {-c^2} \sqrt {\frac {c^2 (d+e x)}{c^2 d-\sqrt {-c^2} e}} \sqrt {1+c^2 x^2} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),-\frac {2 \sqrt {-c^2} e}{c^2 d-\sqrt {-c^2} e}\right )}{c^3 e \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}}-\frac {8 b d \sqrt {1+c^2 x^2} \sqrt {1-\frac {e \left (1-\sqrt {-c^2} x\right )}{\sqrt {-c^2} d+e}} \operatorname {EllipticPi}\left (2,\arcsin \left (\frac {\sqrt {1-\sqrt {-c^2} x}}{\sqrt {2}}\right ),\frac {2 e}{\sqrt {-c^2} d+e}\right )}{c e^2 \sqrt {1+\frac {1}{c^2 x^2}} x \sqrt {d+e x}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 13.03 (sec) , antiderivative size = 264, normalized size of antiderivative = 0.83 \[ \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{(d+e x)^{3/2}} \, dx=\frac {2 \left (\frac {a (2 d+e x)}{\sqrt {d+e x}}+\frac {b (2 d+e x) \text {csch}^{-1}(c x)}{\sqrt {d+e x}}-\frac {2 i b \sqrt {-\frac {e (-i+c x)}{c d+i e}} \sqrt {-\frac {e (i+c x)}{c d-i e}} \left (\operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {-\frac {c}{c d-i e}} \sqrt {d+e x}\right ),\frac {c d-i e}{c d+i e}\right )-2 \operatorname {EllipticPi}\left (1-\frac {i e}{c d},i \text {arcsinh}\left (\sqrt {-\frac {c}{c d-i e}} \sqrt {d+e x}\right ),\frac {c d-i e}{c d+i e}\right )\right )}{c \sqrt {-\frac {c}{c d-i e}} \sqrt {1+\frac {1}{c^2 x^2}} x}\right )}{e^2} \]

[In]

Integrate[(x*(a + b*ArcCsch[c*x]))/(d + e*x)^(3/2),x]

[Out]

(2*((a*(2*d + e*x))/Sqrt[d + e*x] + (b*(2*d + e*x)*ArcCsch[c*x])/Sqrt[d + e*x] - ((2*I)*b*Sqrt[-((e*(-I + c*x)
)/(c*d + I*e))]*Sqrt[-((e*(I + c*x))/(c*d - I*e))]*(EllipticF[I*ArcSinh[Sqrt[-(c/(c*d - I*e))]*Sqrt[d + e*x]],
 (c*d - I*e)/(c*d + I*e)] - 2*EllipticPi[1 - (I*e)/(c*d), I*ArcSinh[Sqrt[-(c/(c*d - I*e))]*Sqrt[d + e*x]], (c*
d - I*e)/(c*d + I*e)]))/(c*Sqrt[-(c/(c*d - I*e))]*Sqrt[1 + 1/(c^2*x^2)]*x)))/e^2

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 6.85 (sec) , antiderivative size = 421, normalized size of antiderivative = 1.32

method result size
parts \(\frac {2 a \left (\sqrt {e x +d}+\frac {d}{\sqrt {e x +d}}\right )}{e^{2}}+\frac {2 b \left (\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )+\frac {\operatorname {arccsch}\left (c x \right ) d}{\sqrt {e x +d}}+\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-2 \operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e^{2}}\) \(421\)
derivativedivides \(\frac {-2 a \left (-\sqrt {e x +d}-\frac {d}{\sqrt {e x +d}}\right )-2 b \left (-\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )-\frac {\operatorname {arccsch}\left (c x \right ) d}{\sqrt {e x +d}}-\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-2 \operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e^{2}}\) \(425\)
default \(\frac {-2 a \left (-\sqrt {e x +d}-\frac {d}{\sqrt {e x +d}}\right )-2 b \left (-\sqrt {e x +d}\, \operatorname {arccsch}\left (c x \right )-\frac {\operatorname {arccsch}\left (c x \right ) d}{\sqrt {e x +d}}-\frac {2 \sqrt {-\frac {i c e \left (e x +d \right )+c^{2} d \left (e x +d \right )-c^{2} d^{2}-e^{2}}{c^{2} d^{2}+e^{2}}}\, \sqrt {\frac {i c e \left (e x +d \right )-c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} d^{2}+e^{2}}}\, \left (\operatorname {EllipticF}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \sqrt {-\frac {-c^{2} d^{2}+2 i c d e +e^{2}}{c^{2} d^{2}+e^{2}}}\right )-2 \operatorname {EllipticPi}\left (\sqrt {e x +d}\, \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}, \frac {c^{2} d^{2}+e^{2}}{\left (c d +i e \right ) c d}, \frac {\sqrt {-\frac {\left (-c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}{\sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )\right )}{c \sqrt {\frac {c^{2} \left (e x +d \right )^{2}-2 c^{2} d \left (e x +d \right )+c^{2} d^{2}+e^{2}}{c^{2} e^{2} x^{2}}}\, x \sqrt {\frac {\left (c d +i e \right ) c}{c^{2} d^{2}+e^{2}}}}\right )}{e^{2}}\) \(425\)

[In]

int(x*(a+b*arccsch(c*x))/(e*x+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*a/e^2*((e*x+d)^(1/2)+d/(e*x+d)^(1/2))+2*b/e^2*((e*x+d)^(1/2)*arccsch(c*x)+arccsch(c*x)*d/(e*x+d)^(1/2)+2/c*(
-(I*c*e*(e*x+d)+c^2*d*(e*x+d)-c^2*d^2-e^2)/(c^2*d^2+e^2))^(1/2)*((I*c*e*(e*x+d)-c^2*d*(e*x+d)+c^2*d^2+e^2)/(c^
2*d^2+e^2))^(1/2)*(EllipticF((e*x+d)^(1/2)*((c*d+I*e)*c/(c^2*d^2+e^2))^(1/2),(-(2*I*c*d*e-c^2*d^2+e^2)/(c^2*d^
2+e^2))^(1/2))-2*EllipticPi((e*x+d)^(1/2)*((c*d+I*e)*c/(c^2*d^2+e^2))^(1/2),1/(c*d+I*e)/c*(c^2*d^2+e^2)/d,(-(I
*e-c*d)*c/(c^2*d^2+e^2))^(1/2)/((c*d+I*e)*c/(c^2*d^2+e^2))^(1/2)))/((c^2*(e*x+d)^2-2*c^2*d*(e*x+d)+c^2*d^2+e^2
)/c^2/e^2/x^2)^(1/2)/x/((c*d+I*e)*c/(c^2*d^2+e^2))^(1/2))

Fricas [F(-1)]

Timed out. \[ \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{(d+e x)^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate(x*(a+b*arccsch(c*x))/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

Timed out

Sympy [F]

\[ \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{(d+e x)^{3/2}} \, dx=\int \frac {x \left (a + b \operatorname {acsch}{\left (c x \right )}\right )}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(x*(a+b*acsch(c*x))/(e*x+d)**(3/2),x)

[Out]

Integral(x*(a + b*acsch(c*x))/(d + e*x)**(3/2), x)

Maxima [F]

\[ \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{(d+e x)^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x}{{\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x*(a+b*arccsch(c*x))/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

b*(2*(e*x + 2*d)*log(sqrt(c^2*x^2 + 1) + 1)/(sqrt(e*x + d)*e^2) + integrate(2*(c^2*e*x^2 + 2*c^2*d*x)/((c^2*e^
2*x^2 + e^2)*sqrt(c^2*x^2 + 1)*sqrt(e*x + d) + (c^2*e^2*x^2 + e^2)*sqrt(e*x + d)), x) - integrate((6*c^2*d*e*x
^2 + (e^2*log(c) + 2*e^2)*c^2*x^3 + (4*c^2*d^2 + e^2*log(c))*x + (c^2*e^2*x^3 + e^2*x)*log(x))/((c^2*e^3*x^3 +
 c^2*d*e^2*x^2 + e^3*x + d*e^2)*sqrt(e*x + d)), x)) + 2*a*(sqrt(e*x + d)/e^2 + d/(sqrt(e*x + d)*e^2))

Giac [F]

\[ \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{(d+e x)^{3/2}} \, dx=\int { \frac {{\left (b \operatorname {arcsch}\left (c x\right ) + a\right )} x}{{\left (e x + d\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(x*(a+b*arccsch(c*x))/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)*x/(e*x + d)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {x \left (a+b \text {csch}^{-1}(c x)\right )}{(d+e x)^{3/2}} \, dx=\int \frac {x\,\left (a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )\right )}{{\left (d+e\,x\right )}^{3/2}} \,d x \]

[In]

int((x*(a + b*asinh(1/(c*x))))/(d + e*x)^(3/2),x)

[Out]

int((x*(a + b*asinh(1/(c*x))))/(d + e*x)^(3/2), x)